Sign in here!

fsu.devlup.org/signin 3 D M ath

== pevLUp FSU
¢GBM #11¢
[=]

November 21th, 2024

Welcome!

Next Few Weeks

Date Week # GBM Title Secondary Event Presenter
1 (No Meeting) Involvement Fair
2 Intro to Club and New Club Project Club
3 Intro to Game Design Chris
4 Intro to 3D Game Dev in Godot Dion
5 Intro to 3D Modelling in Blender Jake, Parker, Emma

6 Blender Animations Ares
7 Blender Materials Parker, Jake
8 Pixel Art Ares, Emma
9 Tile Maps Jake, Ares
10 Spooky Game Night Social CANDY FOR ALL (No Candy) Jack Skellington
11 Writing for Games Emma, Chris
12 Ul Design Emma, Jake
13 3D Math Dion
14 Thanksgiving Break
15 Goodbye Chris Social Chris
16 Finals

#@dshowoff recap

So... YOU want to make a 3D Game?

What is a vector?

e Sometimes we need more than just one
number (a scalar) to express a quantity.

e |n 2D, we can use a Vector2.
In 3D, a Vector3.

e (Godot hides a lot of the complex math in these
types to make your life easier!

[1

This movie was 14 years ago...

Can represent a point in space,

but also a direction.

What is a vector?

e “A geometric object that has a
magnitude (or length) and direction.”
—Wikipedia

e \We usually write just the head.
E.g., Vector3(3, 3, 3)
e The tail’'s position is always™ (0, 0O, 0).

What is a vector?

What can we do with vectors?

Add

Negate

Scale

Find Magnitude (or Length) -
Normalize BT R "o "
Angle between vectors e O
Perpendicular vector between vectors

e Rotate...?

Adding Vectors

Adding Vectors Geometrically

Moving an Object

L3 func _physics_process(_delta: float) -> void:
4 global_position += Vector3(0.1, 0, 0)

Live Demo

ee0e Test (DEBUG)

Negating Vectors

Negating Vectors Geometrically

Moving Backwards

o3 func _physics_process(_delta: float) -> void:
4 global_position += -Vector3(0.1, 0, 0)

Live Demo

20@ Demo (DEBUG)

Scaling Vectors

Scaling Vectors Geometrically

Moving with a Set Speed

3 const SPEED = 3

£S5 func _physics_process(_delta: float) -> void:
6 global_position += Vector3(1, 0, 0) * SPEED

(- 16.667 wiilliseconds

An Aside on Delta Time

e The amount of time, in seconds,
since the last frame.
(8.333 wiilliseconds
e 120 fps =>0.00833... s
e 60 fps=>0.0166...s
e 30 fps=>0.0333...s

|«— n previous —|

e Everything happening every l«— last —

process() should use delta. L] | L |

t1 t2 t3 t4 t5

Moving with a Set Speed Per Second

const SPEED = 3

func _physics_process(delta: float) -> void:
global_position += Vector3(1, 0, 0) * SPEED * delta

Live Demo

ee0e Test (DEBUG)

Magnitude (or Length) of a Vector

|v]| = V&2 +y? + 22

Moving Diagonally

const SPEED = 3

func _physics_process(delta: float) -> void:
global_position += Vector3(1l, 1, 0) * SPEED * delta

func _process(delta: float) -> void:
print(global_position.length())

Using length_squared()

e Avoids costly sqrt() function.
e Useable for comparisons.

const RANGE = 5
if v.length_squared() <= RANGE * RANGE:
print("In Range")

Distance Between Positions

dist(u,v) =

Godot Makes This Easy

var v = Vector3(1, 2, 3)
var u = Vector3(4, 5, 6)

v.distance_to(u)
v.distance_squared_to(u)

Normalize a Vector

e Sometimes we want a vector to represent just a direction.
e \We can normalize it, meaning make its magnitude = 1.

e Resulting vector is called a unit vector.

1

Unormalized — W”

Moving Diagonally FIXED!

const SPEED = 3

func _physics_process(delta: float) -> void:
global_position += Vector3(1, 1, 0).normalized() * SPEED * delta

Angle Between Vectors (Dot Product)

e Also called the Inner Product.
e 0 if perpendicular, positive if angle < 90, negative if angle > 90.

U+ V= UgVgp T UyVUy + UV,

Angle Between Vectors (Dot Product)

Can the Enemy See the Player?

var enemy_forward = -tracked_node.transform.basis.z
var direction_to_camera = tracked_node.global_position.direction_to(global_position)

if enemy_forward.dot(direction_to_camera) > 0:
%TrackedPosition.text += " Sees Player"

Perpendicular Vector Between Vectors (Cross Product)

=1

= [|a,b;- a,b,|—j|a, b a,b,|+k|a, b a,b,

Godot makes this much easier!

Vector3 cross(with: Vector3) const

Returns the cross product of this vector and with .

This returns a vector perpendicular to both this and with , which would be the normal vector of the plane
defined by the two vectors. As there are two such vectors, in opposite directions, this method returns the
vector defined by a right-handed coordinate system. If the two vectors are parallel this returns an empty
vector, making it useful for testing if two vectors are parallel.

Use Cases?

Calculating the normal vector of a plane
Lighting calculations

Physics engine calculations

Inverse kinematics calculations

e Mostly stuff that game engines do for you

Representing Rotation in a Vector?

Axis Order Matters

Gimbal Lock

Animation Menu

Display Gimbals

[vaw[Pitcn[Roll

Orientation 1
SET FROM CURRENT

Orientation2 o1 e
SET FROM CURRENT | °

ANIMATE

36((0 0

https://compsci290-s2016.github.io/CoursePage/Materials/EulerAnglesViz/
https://compsci290-s2016.github.io/CoursePage/Materials/EulerAnglesViz/

Say NO to Euler Angles

Say no to Euler angles

The result of all this is that you should not use the rotation property of Node3D s nodes in Godot for
games. It's there to be used mainly in the editor, for coherence with the 2D engine, and for simple rotations
(generally just one axis, or even two in limited cases). As much as you may be tempted, don't use it.

Quaternions

“Quaternions... though beautifully ingenious, have
been an unmixed evil to those who have touched
them in any way, including Clerk Maxwell.”

—Lord Kelvin

Quaternions Video by 3blue1brown

http://www.youtube.com/watch?v=d4EgbgTm0Bg

Use Transform3D Instead

The Transform3D built-in Variant type is a 3x4 matrix representing a transformation in 3D space. It contains

a Basis, which on its own can represent rotation, scale, and shear. Additionally, combined with its own origin,
the transform can also represent a translation.

What are Basis Vectors?

g >

Q‘ transform.basis. x

transform.basis.y

Cameras look back transform.basis.z
(towards Z-Negative) '

Z (Front)

Rotating a Transform3D

var axis = Vector3(1, 0, Q) # Or Vector3.RIGHT
var rotation_amount = 0.1

Rotate the transform around the X axis by 0.1 radians.

transform.basis = Basis(axis, rotation_amount) * transform.basis
shortened

transform.basis = transform.basis.rotated(axis, rotation_amount)

Rotating a Transform3D

Rotate the transform around the X axis by 0.1 radians.
rotate(Vector3(1l, 0, 0), 06.1)

¥ shortened
rotate _x(0.1)

Use Quaternions for Interpolation

Convert basis to quaternion, keep in mind scale is lost
var a = Quaternion(transform.basis)
var b = Quaternion(transform2.basis)

Interpolate using spherical-linear interpolation (SLERP).
var ¢ = a.slerp(b,0.5) # find halfway point between a and b
Apply back

transform.basis = Basis(c)

Putting it together: How does the free camera work?

Exit Survey:

A

Fig. 1: Homer dislikes exit surveys.

